If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-x^2+32x-160=0
We add all the numbers together, and all the variables
-1x^2+32x-160=0
a = -1; b = 32; c = -160;
Δ = b2-4ac
Δ = 322-4·(-1)·(-160)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{6}}{2*-1}=\frac{-32-8\sqrt{6}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{6}}{2*-1}=\frac{-32+8\sqrt{6}}{-2} $
| (2x+1)/3+(1/2)=3x | | F(10)=2x+4 | | w+3=−4w+3=−4. | | 6w-40=-2(w-8) | | 6b+1=-4b-9 | | 2b+6(b-4);b=8 | | 3^(3x)=(6^(9x))+4 | | 17=2x-2 | | C=15n+85C=15n+85 | | 5(2c+7)-3c=7(c+5 | | -38-(-35)=x/2 | | 2x-12=3x-3+ | | 30=-6y+4(y+4) | | x^2+32x-160=0 | | |x|=20 | | (x-5)^4=80 | | 16+4*n=7-n | | (x-5)^4=8- | | 2x-12=3x-31 | | 7^x+5=-26 | | 10x=x-18 | | 8w=21+5w | | 8x+6–2x=6x+5 | | x^2+(0.5*x)^2=6 | | 4x-9=3x-26 | | X=2x-2x | | 2(x–3)+21=–3 | | (2x-3)^3-(2x-3)=0 | | (1/4)x+7=8 | | 2/3(9x-6)=4x+10 | | 3k-5k-30=-20 | | 6x+9x=15x-3 |